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Outline

● AMG/AMGe Background

● The basic Adaptive AMG (AdAMG) method
● The “wrong approach” (and PCG)
● Based on Ruge-Stüben (AdAMG-RS)
● Based on Smoothed Aggregation (AdAMG-SA)

● Future work / compatible relaxation
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AMG Background

● AMG assumes only information about 
the underlying matrix structure

● There is no single AMG algorithm
● AMG automatically coarsens “grids”
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Accurate characterization of smooth error is crucial
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Good local characterizations of smooth 
error is key to robust algebraic multigrid

● Traditional AMG uses the following heuristic, based 
on properties of M-matrices: smooth error varies 
slowest in the direction of “large” coefficients

● New heuristic based on multigrid theory: interpolation 
must be able to reproduce a mode up to the same 
accuracy as the size of the associated eigenvalue
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AMGe uses local finite element stiffness 
matrices to characterize smooth error

● AMGe heuristic is based on multigrid theory:
interpolation must be able to reproduce a mode up to the 
same accuracy as the size of the associated eigenvalue

● Use local measure to construct AMGe components:
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● Basic method & theory in SISC paper, 2000
● Agglomeration approach to appear in SISC
● Element-free variant to appear in SISC
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AMGe uses finite element stiffness 
matrices to localize new heuristic

● Global measure:

● Local measure:

where       is a canonical basis vector,        is a row of 
interpolation, and       is a sum of local stiffness 
matrices
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● Interpolation is defined by the arg min of

where we restrict the structure of iterpolation to 
“nearest neighbors” by

● This is easily computed in practice

Using local measure to define 
interpolation
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Computing interpolation in practice 

● Partition local matrix by F and C-pts:

● Interpolation to point i is defined by
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Using local measure to define interp. is 
equivalent to fitting local eigenmodes 

● Assume the eigen-decomposition:

● Finding the arg min is equivalent to solving the 
following constrained least-squares problem
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Adaptive AMG (AdAMG)
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Adaptive AMG employs the idea of: using 
the method to improve the method

● Main idea: to uncover the slowly-converging error 
components (the so-called bad guys) by applying the 
“current method” to the system

and using them to adapt (improve) the method

● Achi Brandt’s Bootstrap AMG is an example

● Notation: Consider solving the system

Ax = 0

Au = f
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Basic AdAMG cycle (relaxation pass)

● The columns of          are the iteration vectors
● The columns of          are the bad guys
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● We now have the components of a multigrid method

Check convergence
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Basic AdAMG cycle (V-cycle pass)

● We can apply the previously constructed MG 
method to improve the MG method
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● We now have new multigrid components

Check convergence
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Can imagine many variations for 
constructing AdAMG methods

● Even the basic cycle could be different

● Start with m bad guys and “build”
— random with m columns
—
—
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Several approaches for defining P

● Prolongation must interpolate well all components 
not eliminated by relaxation

● Two basic approaches:

— Construct bad-guy space rich in all smooth 
modes, and construct P using only this space

— BAMG does this

— Construct bad-guy space rich in only smoothest 
modes, and construct P using this space plus 
additional matrix information

— Order number-of-kernel-components bad guys
— Our methods use this approach
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The “wrong approach” for AdAMG

● Consider the following iterative method

● With                                , can rewrite as

● Error propagation is

uk + 1 = uk + M − 1rk

uk + 1 = Hk + 1u0 + ∑i = 0
k HiM − 1f

H = ( I − M − 1A)

ek + 1 = Hk + 1e0
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The “wrong approach” for AdAMG

● Consider a 2-level V(j,0) cycle with error propagation

● The Setup Algorithm:

ek = ( I − Qk) H
j
e0; Qk = Pk( Pk

TAPk) − 1Pk
TA

xPP

xx

xHQIx

kk

xP

11

1

1

00

,=

,)ε</(

)−(=

)+=;;=(

=;=

10

modnar0

rofdne

potsfi

rof

kkk

kk

k
j

kk

++

+

+



RDF 18CASC

The “wrong approach” for AdAMG

● Easy to show that        is just an A-orthogonal 
projection onto the space

Qk

Kk = { H
j
x0, H

2j
x0, …, H

kj
x0}

● This looks like a Krylov space!

● In fact, it is just PCG with our baseline iterative 
method as the preconditioner
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AdAMG and PCG

● Error propagation for PCG has the form

where         is an A-orthogonal projection onto

● But                                                   implies

● Clear that AdAMG and PCG have same basic properties

● In fact, the “right choice” of initial guesses will produce exactly 
the same iterates, analytically
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AdAMG / PCG relationship underscores 
the true role of the bad guy

● The role of the bad guy is to be a representative or 
“straw man” for constructing what it means to be 
locally smooth

● The key word here is “locally”

● This “wrong approach” example deals with the bad 
guys globally, and as such, has sub-optimal 
convergence properties



AdAMG-RS
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AdAMG-RS is an adaptive method based 
on standard Ruge-Stüben heuristics

● In AdAMG-RS we will generate only one bad guy to 
represent the smoothest component (thinking of 
scalar problems for now)

● Note that more information is needed in order to 
construct good interpolation operators
— e.g., piecewise constant interpolation fits the 

constant kernel function exactly, but not good
— use bad guy plus M-matrix assumption

● We will use an Element-free AMGe framework to 
describe this method

● More about that next…
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Element-Free AMGe builds local element 
matrices directly from the global matrix

● Partition local neighborhood about point i into

● Define an extension map of the form

● Then, the needed local operators are defined by
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E-Free AMGe can be used to produce the 
R-S AMG interpolation formulas

● Let               , the point to which we are interpolating
● Define the extension map as follows (where e is any 

vector and j is a point in the extension set):

● RS-AMG interpolation is defined by setting the 
residual at point i to zero:
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AdAMG-RS: Deriving interpolation

● Assume extension map to point j of the form

● Want to extend the bad guy x exactly:

● This gives the following:
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AdAMG-RS: Some Comments

● Note that the RS-AMG heuristic (also notions of 
“strong” and “weak” connections) changes in this 
more general setting: smooth error varies most like the 
bad guy in the direction of “large” coefficients

● Note that this new method can solve systems that 
have been arbitrarily diagonally scaled

● Note also that this is really all the current method 
extends RS-AMG to be able to solve
— need to consider alternative approaches not 

based on M-matrix assumption
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AdAMG-RS: Results

● Geometric choice of coarse grids
● Bad guy generated by 2 cycles of the multilevel 

setup algorithm

− ∇•( D( x, y) ∇u( x, y) ) = 0 on [ 0, 1] × [ 0, 1]
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AdAMG-RS: Results (Laplace)

size Dirichlet Neumann
32x32 0.06 0.06
64x64 0.07 0.07

128x128 0.07 0.07
256x256 0.07 0.07
512x512 0.07 0.07

1024x1024 0.07 0.07

● Nice scalability
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AdAMG-RS: Results (piecewise constant)

● Geometric coarsening may be influencing D1 results

D1: 102

1

D2:
1

105

size D1 D2
32x32 0.08 0.06
64x64 0.09 0.07

128x128 0.08 0.07
256x256 0.11 0.07
512x512 0.17 0.07

1024x1024 0.38 0.07
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AdAMG-RS: Results (scaled)

● Scaled results are similar to the unscaled results

1 + sin ( 547πx) sin ( 496πy) + 10− 7

size Dirichlet Neumann
32x32 0.06 0.06
64x64 0.07 0.07

128x128 0.07 0.07
256x256 0.07 0.07
512x512 0.07 0.07

1024x1024 0.07 0.07

size D1 D2
32x32 0.08 0.06
64x64 0.09 0.07

128x128 0.09 0.07
256x256 0.35 0.07
512x512 0.19 0.07

1024x1024 0.92 0.07

Scaled Laplacian Scaled P-W Constant

● Scale by the following function



AdAMG-SA
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AdAMG-SA is an adaptive method based 
on Smoothed Aggregation

● In AdAMG-SA we will generate several bad guys to 
represent the smoothest components

● As with AdAMG-RS more information is needed in 
order to construct good interpolation operators

● We will get this information from the matrix 
indirectly through the prolongator smoother

● More about that next…
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Smoothed Aggretation basics

● Points are aggregated

● Tentative prolongator 
is constructed from 
aggregates and local 
basis functions

● Prolongation is built by 
“smoothing” the 
tentative prolongator

Pl = SlPl
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AdAMG-SA: Tentative prolongation is 
defined by “chopping up” the bad guys

● Local QR factorization is used to orthonormalize
● Can have arbitrary numbers of DOFs per aggregate

=

Pl Bl + 1 Bl

s.t. Pl
T
Pl = I
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AdAMG-SA: Results (Poisson)

● Scaled version is scaled by diagonal with entries 
given by                           random

size scaled kernel convergence complexity
41x41x41 1 (exact) 0.1 1.04

1 0.1 1.04
yes 1 0.1 1.04

101x101x101 1 (exact) 0.1 1.04
1 0.1 1.04

yes 1 0.1 1.04

10β, β∈[ − 6, 6]
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AdAMG-SA: Results (2D Elasticity)

● Same scaling as before

size scaled kernel convergence complexity
80,400 3 (exact) 0.2 1.29

4 0.1 1.51
5 0.1 1.79

yes 4 0.1 1.51
yes 5 0.1 1.79

180,600 3 (exact) 0.2 1.29
4 0.2 1.51
5 0.1 1.79

yes 4 0.1 1.51
yes 5 0.1 1.79
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Future Directions for AdAMG

● Come up with a better name!

● AdAMG-RS:
— other approaches for using the matrix entries
— systems version
— compatible relaxation to choose coarse grids

● Improve efficiency of setup phase

● Apply to harder problems (e.g., Maxwell, Helmholtz)

● Theory



Compatible Relaxation (CR)
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CR and AMGe: Preliminaries

● Consider solving the SPD system

● Reorder the equations

● Define the global measure
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CR and AMGe: Measuring the quality of 
the coarse grid

● Assume we are given a coarse grid.  Then, the 
following measures the ability of the coarse grid to 
represent algebraically smooth error.

● Note that we have not restricted interpolation to be 
local here, but for PDE problems, we should be able 
to approximate Q with local interpolation.

● We have that

eQMM eQc ),(= xamnim ≠ 0

MAAW =;−=
A

ccfff )(λ
− 11

nim ff



RDF 41CASC

CR and AMGe: Convergence of CR

● Compatible relaxation (Brandt, ETNA, 2000) is in 
general a modified relaxation scheme that keeps the 
coarse-level variables invariant

● In general, the coarse-level variables are defined to 
be some linear combination of fine-level variables:

● A general measure for the quality of the set of 
coarse variables is the convergence rate of CR

● General idea: If CR is slow to converge, either increase 
the size of the coarse grid or do more relaxation

● F-relaxation is a specific instance of CR

uu jjij
c
i µ= ∑
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CR and AMGe: Convergence of CR

● Consider weighted pointwise Jacobi F-relaxation

then 

● For appropriate choice of weight: Jacobi F-relaxation 
is fast to converge iff the AMGe measure is small
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Using CR to Define Coarse Variables

● To check convergence of CR, relax on the equation

and monitor pointwise convergence to 0
● CR coarsening algorithm:

xA ff = 0
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Using CR to Define Coarse Variables

➨ Initialize U-pts

➨ Do CR and redefine 
U-pts as points 
slow to converge

➨ Select new C-pts as 
indep. set over U
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Using CR to Define Coarse Variables

➨ Initialize U-pts

➨ Do CR and redefine 
U-pts as points 
slow to converge

➨ Select new C-pts as 
indep. set over U
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Using CR to Define Coarse Variables

➨ Initialize U-pts

➨ Do CR and redefine 
U-pts as points 
slow to converge

➨ Select new C-pts as 
indep. set over U



RDF 47CASC

Using CR to Define Coarse Variables

➨ Initialize U-pts

➨ Do CR and redefine 
U-pts as points 
slow to converge

➨ Select new C-pts as 
indep. set over U
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Using CR to Define Coarse Variables

➨ Initialize U-pts

➨ Do CR and redefine 
U-pts as points 
slow to converge

➨ Select new C-pts as 
indep. set over U
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CR and AMGe: The Future

● Have (very) recently generalized the AMGe measure 
and theory to handle the more general CR setting

● Thinking about how we might apply these ideas to 
automatically adapt to harder problem settings
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